Reno: regularized non-parametric analysis of protein lysate array data
نویسندگان
چکیده
MOTIVATION The reverse-phase protein lysate arrays have been used to quantify the relative expression levels of a protein in a number of cellular samples simultaneously. To avoid quantification bias due to mis-specification of commonly used parametric models, a nonparametric approach based on monotone response curves may be used. The existing methods, however, aggregate the protein concentration levels of replicates of each sample, and therefore fail to account for within-sample variability. RESULTS We propose a method of regularization on protein concentration estimation at the level of individual dilution series to account for within-sample or within-group variability. We use an efficient algorithm to optimize an approximate objective function, with a data-adaptive approach to choose the level of shrinkage. Simulation results show that the proposed method quantifies protein concentration levels well. We show through the analysis of protein lysate array data from cell lines of different cancer groups that accounting for within-sample variability leads to better statistical analysis. AVAILABILITY Code written in statistical programming language R is available at: http://odin.mdacc.tmc.edu/~jhhu/Reno
منابع مشابه
Non-parametric quantification of protein lysate arrays
MOTIVATION Proteins play a crucial role in biological activity, so much can be learned from measuring protein expression and post-translational modification quantitatively. The reverse-phase protein lysate arrays allow us to quantify the relative expression levels of a protein in many different cellular samples simultaneously. Existing approaches to quantify protein arrays use parametric respon...
متن کاملتحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملEvaluating the efficiency of Iranian industrial universities based on non-parametric and parametric approaches
The present study is the efficiency of Iranian industrial universities using non-parametric methods of data envelopment analysis and random border analysis parameter for input variables (number of incoming students, number of faculty members, number of staff and budget) and output (specific income, Has evaluated the number of students studying, the number of graduates and conference papers) and...
متن کاملFunctional MRI using regularized parallel imaging acquisition.
Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss ...
متن کاملA multi-parametric flow cytometric assay to analyze DNA–protein interactions
Interactions between DNA and transcription factors (TFs) guide cellular function and development, yet the complexities of gene regulation are still far from being understood. Such understanding is limited by a paucity of techniques with which to probe DNA-protein interactions. We have devised magnetic protein immobilization on enhancer DNA (MagPIE), a simple, rapid, multi-parametric assay using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 28 9 شماره
صفحات -
تاریخ انتشار 2012